Voting-based consensus clustering for combining multiple clusterings of chemical structures
نویسندگان
چکیده
Many consensus clustering methods have been applied in different areas such as pattern recognition, machine learning, information theory and bioinformatics. However, few methods have been used for chemical compounds clustering. In this paper, an information theory and voting based algorithm (Adaptive Cumulative Voting-based Aggregation Algorithm A-CVAA) was examined for combining multiple clusterings of chemical structures. The effectiveness of clusterings was evaluated based on the ability of the clustering method to separate active from inactive molecules in each cluster, and the results were compared with Ward's method. The chemical dataset MDL Drug Data Report (MDDR) and the Maximum Unbiased Validation (MUV) dataset were used. Experiments suggest that the adaptive cumulative voting-based consensus method can improve the effectiveness of combining multiple clusterings of chemical structures.
منابع مشابه
انتخاب اعضای ترکیب در خوشهبندی ترکیبی با استفاده از رأیگیری
Clustering is the process of division of a dataset into subsets that are called clusters, so that objects within a cluster are similar to each other and different from objects of the other clusters. So far, a lot of algorithms in different approaches have been created for the clustering. An effective choice (can combine) two or more of these algorithms for solving the clustering problem. Ensemb...
متن کاملCombining multiple classifications of chemical structures using consensus clustering.
Consensus clustering involves combining multiple clusterings of the same set of objects to achieve a single clustering that will, hopefully, provide a better picture of the groupings that are present in a dataset. This Letter reports the use of consensus clustering methods on sets of chemical compounds represented by 2D fingerprints. Experiments with DUD, IDAlert, MDDR and MUV data suggests tha...
متن کاملConsensus Based Ensembles of Soft Clusterings
Cluster Ensembles is a framework for combining multiple partitionings obtained from separate clustering runs into a final consensus clustering. This framework has attracted much interest recently because of its numerous practical applications, and a variety of approaches including Graph Partitioning, Maximum Likelihood, Genetic algorithms, and Voting-Merging have been proposed. The vast majorit...
متن کاملConsensus Clustering + Meta Clustering = Multiple Consensus Clustering
Consensus clustering and meta clustering are two important extensions of the classical clustering problem. Given a set of input clusterings of a given dataset, consensus clustering aims to find a single final clustering which is a better fit in some sense than the existing clusterings, and meta clustering aims to group similar input clusterings together so that users only need to examine a smal...
متن کاملPositional and confidence voting-based consensus functions for fuzzy cluster ensembles
Consensus clustering, i.e. the task of combining the outcomes of several clustering systems into a single partition, has lately attracted the attention of researchers in the unsupervised classification field, as it allows the creation of clustering committees that can be applied with multiple interesting purposes, such as knowledge reuse or distributed clustering. However, little attention has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2012